

ESTIMATED τ NEUTRINO FLUXES FROM A BEAM DUMP AT 400 GEV AND 1000 GEV

S.Mori

January 24, 1979

An interesting test to observe the τ neutrino associated with the τ lepton using neutrino detectors has been proposed 1 . It will be one of the most exciting experiments which can be performed at Fermilab when the Tevatron becomes operational in the proton energy region of 1000 GeV 2 .

Fluxes of τ neutrinos and antineutrinos from a beam dump for the incident proton energy of 400 GeV and 1000 GeV were calculated using a Monte Carlo program. The following assumptions were made in the calculations:

- 1. τ neutrinos, ν_{τ} , were produced from the F⁺ meson decay, $F^+ \to \tau^+ \nu_{\tau}$ (B.R. = 3%), and the τ^- decay, $\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau}$ (B.R. = 38%), $\pi^- \nu_{\tau}$ (B.R. = 10%) and $\rho^- \nu_{\tau}$ (B.R. = 20%), where the ℓ is the e or μ . The τ^- is the decay product of the F⁻. Conversely, τ antineutrinos, $\bar{\nu}_{\tau}$, were produced from the F⁻ and τ^+ decays. The mass of the F was 2.06 GeV.
- 2. Other decay modes of the τ were not included.
- 3. The helicity state of the τ from the F decay was not taken into account in the τ decay.
- 4. The energy spectrum of the v_{τ} from $\tau \to \ell \bar{\nu}_{\ell} v_{\tau}$ had the form of (3-2 ϵ) ϵ^3 , where ϵ is the ratio of the energy of the v_{τ} to its maximum possible energy of 0.89 GeV (half the τ mass)⁴.
- 5. The production cross section of the F⁺ F⁻ pair from protonnucleus interactions had the form⁵,6

$$E \frac{d^{3}\sigma}{dp^{3}} \qquad \propto \qquad \frac{g (p_{t},s) G(x)}{(\sqrt{p_{t}^{2} + M_{F}^{2}} + 2.7)^{16.5}}$$

where

$$g(p_t,s) = exp(-1.06p_T), for p_T < 1.0$$

 $exp\{(1-p_T)/\sqrt{s} -1.06\}, for p_T > 1.0$

$$G(x) = 1$$
, for $|x| < 0.25$
 $\{\frac{1-|x|}{0.75}\}^4$, for $|x| > 0.25$.

- 6. The integrated cross section of the F pair production per nucleon from 0 to 200 mrad in the laboratory system was 10 ub.
- 7. The cross section of the F pair production had the same A dependence as the proton absorption cross section; i.e. roughly proportional to $A^{2/3}$.
- 8. The lifetime of the F was so short that they decayed before being absorbed by beam dump material.
- 9. The beam dump was made of copper.
- 10. The distance between the beam dump and the detector was 250 m as proposed previously 7 .

Figures 1, 2, and 3 plot calculated τ neutrino fluxes for three angular ranges which are defined with respect to the incident proton beam direction at the beam dump. The angular ranges are 0 to 2 mrad, 4 to 6 mrad, and 8 to 10 mrad. The proton energy is 1000 GeV. Contributions from all the decay processes are shown separately. The ν_{τ} spectrum from the $F^+ \to \tau^+ \nu_{\tau}$ is peaked at a relatively low energy due to a small mass difference between the F^+ and τ^+ . Decay processes of the τ which are not considered here should yield τ neutrinos with much lower energies than those from the $\nu_{\tau} \ell \bar{\nu}_{\ell}$, $\nu_{\tau} \pi^-$ and $\nu_{\tau} \rho^-$ decays. Fluxes of τ antineutrinos are exactly the same as those of τ neutrinos for the production processes considered here. Figure 4 shows summed ν_{τ} fluxes for the three angular ranges.

Table I gives computed event rates of τ neutrino interactions at 1000 GeV for the three angular ranges. We assumed that the total cross section of ν_{τ} nucleon interactions was 0.61 E $_{\nu\tau}$ (in GeV) x 10⁻³⁸ cm². A neutrino detector with a fiducial volume of 100 tons was used.

Electron and muon neutrinos (and antineutrinos) produced in the beam dump constitute the major source of backgrounds for experiments to study ν_{τ} (or $\bar{\nu}_{\tau}$) interactions. Computed electron (or muon) neutrino (or antineutrino) fluxes from the D(1.86) \rightarrow Ke $^{+}\nu_{e}$ (or Ke $^{-}\bar{\nu}_{e}$, or Ku $^{+}\nu_{\mu}$ or Ku $^{-}\bar{\nu}_{\mu}$) in the beam dump as a function of the angle are shown in Figure 5. We assumed that the production cross section for the D(1.86) had the

Table I. Event rates of τ neutrino interactions for a detector with a fiducial volume of 100 tons. The incident proton energy was 1000 GeV. The cross section for the F pair production was assumed to be 10 μb . The distance between the beam dump and the detector was 250 m.

Angular Range (mrad)	Event Rates/10 ¹⁸ Protons
0 - 2	810
4 - 6	350
8 - 10	120

same form as for the F pair production (see assumption 4) and that $\sigma + BR \simeq 10~\mu b$. Neutrino energy distributions from the D decay were taken from Reference 5. The beam dump arrangement was the same as in the τ neutrino case. Note that the four kinds of ordinary neutrinos from the D decay have essentially identical flux distributions.

Muon neutrino and antineutrino fluxes for π^\pm and K^\pm decays in the beam dump at 1000 GeV are shown in Figure 6. The beam dump arrangement was the same as in the τ neutrino case. Stefanski-White's parametrization was used for charged pion and kaon production cross sections. Figure 7 shows the angular dependence of muon neutrino fluxes for π^\pm and K^\pm . Angular ranges are 0 to 2 mrad, 4 to 6 mrad, and 8 to 10 mrad. They decrease much more rapidly as the angle increases compared to the τ neutrino fluxes from the τ decay (see Figure 4).

Electron neutrino and antineutrino fluxes from the K_L 0 and K_{e3} decays in the beam dump are substantially small compared to muon neutrino and antineutrino fluxes from the π and K decay in the beam dump as discussed previously for the incident proton energy of 400 GeV 9 .

Figure 8 plots the computed ν_{τ} flux, neutrino flux from the D(1.86) decay and ν_{μ} flux from the π^+ and K⁺ decays in the copper beam dump at 1000 GeV. The angular range was 0 to 2 mrad. Also shown is the ν_{μ} flux for the double horn system at 400 GeV for comparison. If the cross sections for D and F productions are proportional to A instead

of $A^{2/3}$ dependence, then the τ neutrino flux and neutrino fluxes for the D decay increase by a factor of 4 for the copper beam dump.

Computed τ neutrino fluxes for the incident proton energy of 400 GeV are shown in Figures 9 and 10. Various fluxes produced in a beam dump (aluminum) for the incident proton energy of 400 GeV were discussed extensively in Reference 9.

Valuable discussions with Dr. C.H.Albright and Dr. T.Yamanouchi are greatly acknowledged.

References

- 1. C. H. Albright and R. E. Shrock, FERMILAB Pub. 78/97 THY, December 1978.
- 2. F. Sciulli, Neutrino 78, P. 863, Purdue University, April, 1978.
- 3. G. J. Feldman, Neutrino 78, P. 647, Purdue University, April, 1978.W. Bacino et al., Phys. Rev Letters, 42, 6(1979).
- 4. L.B. Okun, <u>Weak Interaction of Elementary Particles</u>, Chapter 4, Pergamon Press Ltd., 1965.
- 5. I. Hinchliffe and C. H. Llewellyn Smith, Nucl. Phys. B114. 45 (1976).
- 6. M. Bourquin and J. M. Gaillard, Phys. Letters 58B, 191 (1975).
- 7. D. Cline, S. Mori and R. Stefanski, TM-802, July 1978.
- 8. R. Stefanski and H. White, Jr., FN-292, 1976.
- 9. S. Mori, TM-774, March 1978.

Figure Captions

- Figure 1. Computed ν_{τ} fluxes for a beam dump at 1000 GeV. The cross section for the F pair production was assumed to be 10 μb . The angular range was 0 to 2 mrad. The distance between the beam dump and the detector was 250 m.
- Figure 2. Computed ν_{τ} fluxes for a beam dump at 1000 GeV. The cross section for the F pair production was assumed to be 10 μ b. The angular range was 4 to 6 mrad. The distance between the beam dump and the detector was 250 m.
- Figure 3. Computed $\nu_{\rm T}$ fluxes for a beam dump at 1000 GeV. The cross section for the F pair production was assumed to be 10 μb . The angular range was 8 to 10 mrad. The distance between the beam dump and the detector was 250 m.
- Figure 4. Angular dependence of computed ν_{τ} fluxes for a beam dump at 1000 GeV. The cross section for the F pair production was assumed to be 10 μb . The angular ranges were 0 to 2, 4 to 6 and 8 to 10 mrad. The distance between the beam dump and the detector was 250 m.
- Figure 5. Computer electron (or muon) neutrino (or antineutrino) fluxes from the D(1.86) \rightarrow Ke $^{+}\nu_{e}$ decay for a beam dump as a function of the angle. The incident proton energy was 1000 GeV. We assumed that $\sigma(D\bar{D}) \cdot BR = 10~\mu b$. The angular ranges were 0 to 2, 4 to 6, and 8 to 10 mrad. The distance between the beam dump and the detector was 250 m.
- Figure 6. Computed muon neutrino and antineutrino fluxes from the π and K decays in a beam dump at 1000 GeV. The beam dump was made of copper. The distance between the beam dump and the detector was 250 m.

Figure Captions (cont.)

- Figure 7. Angular dependence of computed muon neutrino fluxes from the π and K decays in a beam dump at 1000 GeV. The beam dump was made of copper. The angular ranges were 0 to 2, 4 to 6, and 8 to 10 mrad. The distance between the beam dump and the detector was 250 m.
- Figure 8. Computed ν_{τ} flux, neutrino flux from the D(1.86) decay and ν_{μ} flux from the π and K decays from a beam dump at 1000 GeV. The beam dump was made of copper. The angular range was 0 to 2 mrad. The distance between the beam dump and the detector was 250 m. Also shown is the ν_{μ} flux for the double horn system for the incident proton energy of 400 GeV.
- Figure 9. Computed ν_{τ} fluxes for a beam dump at 400 GeV. The cross section for the F pair production was assumed to be 10 μb . The angular range was 0 to 2 mrad. The distance between the beam dump and the detector was 250 m.
- Figure 10. Angular dependence of computed ν_{τ} fluxes for a beam dump at 400 GeV. The cross section for the F pair production was assumed to be 10 μb . The angular ranges were 0 to 2, 4 to 6, and 8 to 10 mrad. The distance between the beam dump and the detector was 250 m.

Figure 8.

